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Abstract
Recent efforts in the area of joint object matching approach the problem by taking as input a set of pairwise maps, which are
then jointly optimized across the whole collection so that certain accuracy and consistency criteria are satisfied. One natural
requirement is cycle-consistency—namely the fact that map composition should give the same result regardless of the path taken
in the shape collection. In this paper, we introduce a novel approach to obtain consistent matches without requiring initial
pairwise solutions to be given as input. We do so by optimizing a joint measure of metric distortion directly over the space
of cycle-consistent maps; in order to allow for partially similar and extra-class shapes, we formulate the problem as a series
of quadratic programs with sparsity-inducing constraints, making our technique a natural candidate for analysing collections
with a large presence of outliers. The particular form of the problem allows us to leverage results and tools from the field of
evolutionary game theory. This enables a highly efficient optimization procedure which assures accurate and provably consistent
solutions in a matter of minutes in collections with hundreds of shapes.

Keywords: shape matching, shape collections, intrinsic geometry

ACM CCS: Computer Graphics I.3.5 Computational Geometry and Object Modelling Shape Analysis

1. Introduction

Finding matches among multiple objects is a research topic that
has received a good deal of attention in recent years. In its most
common formulation, it translates to the problem of determining
point-to-point maps between all shapes in a collection, subject to
the requirement that the extracted correspondence be in some way
‘consistent’. To this end, a natural and widely accepted criterion is
cycle-consistency [ZKP10], namely that composition of maps along
loops in the collection should approximate the identity. So far, the
problem has been approached by independently computing pairwise
maps [LH05, KLF11] between the objects in the collection; the set
of maps is then given as input to a global optimizer which updates
them so as to improve their quality and produce a final, consis-
tent correspondence. Although most of these approaches work well
provided that the input maps are sufficiently accurate, they suffer in
the presence of noise (incorrect matches) in the maps themselves, or

outlier (extra-class) shapes in the collection. Further, due to the com-
binatorial difficulty of imposing the consistency requirement, many
of the existing schemes provide no guarantee that cycle-consistency
is satisfied exactly.

In this paper, we introduce a new method for the joint matching
of multiple deformable shapes in a collection. Unlike the common
approach outlined above, we do not require any pairwise correspon-
dence to be given as input, and instead formulate the problem as an
optimization directly over the space of cycle-consistent (multi-way)
matches.

1.1. Related work

Probably the earliest attempt to tackle multiple shape matching
in a principled way is the synchronistic matching approach of
Schmidt et al. [STCB07]. Given a collection of planar shapes, the
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Figure 1: A partial multi-way correspondence obtained with our approach on a heterogeneous collection of shapes. Our method does not
require initial pairwise maps as input, as it actively seeks a reliable correspondence by operating directly over the space of joint, cycle-
consistent matches. Partially similar as well as outlier shapes are automatically detected and accounted for by adopting a sparse model for
the joint correspondence. A subset of all matches is shown for visualization purposes.

authors model the joint matching problem as the search of a shortest
path in their product space. Due to the resulting intractability, the
problem is relaxed to a series of pairwise sub-problems, and the
cycle-consistency criterion introduced as a regularizer. The method
allows to improve initial pairwise solutions, but consistency is not
satisfied exactly and the method operates under the assumption that
all shapes in the collection are similar. Pachauri et al. [PKS13] took
a similar perspective by formulating the matching problem using
the language of combinatorial optimization; due to the spectral re-
laxation they perform, the method tends to be sensitive to noise and
outliers. Recently, Yan et al. [YLL*14] formulated the problem as
one of simultaneous multi-graph matching [SRS13], but similarly
to [STCB07, PKS13], cycle-consistency is relaxed and gradually
infused in a pairwise matching process as a regularizer.

Zach et al. [ZKP10] were probably the first to make an explicit
attempt at finding solutions meeting the cycle-consistency require-
ment. Starting from an initial graph of pairwise associations among
the objects in the collection, they detect and remove erroneous edges
as the ones giving rise to inconsistent loops in the graph. As an ex-
tension to this approach, Nguyen et al. [NBCW*11] apply global
optimization to select cycle-consistent maps while at the same time
allowing edges to be replaced by better map compositions. The
method performs well when the full point-to-point correspondence
is known and accurate for all pairs of objects. Huang et al. [HZG*12]
improved upon [NBCW*11] by allowing sparse correspondences,
and later rephrased the problem by replacing the pairwise maps
with a spectral counterpart [HWG14]; however, the approaches do
not apply when the shapes being matched are only partially sim-
ilar [RCB*16]. Finally, Sahillioğlu and Yemez [SY14] proposed a
greedy algorithm that seeks nearly isometric consistent solutions
across all shapes in the collection. The approach only works well
when matching shape extremities, and it is susceptible to outlier
shapes and partiality. In particular, its accuracy depends on the spe-
cific ordering of the shapes in the collection.

All the methods outlined demonstrate good practical performance
in controlled settings, however there has been a general lack of the-
oretical guarantees that ensure correctness of the final correspon-
dence under unfavourable conditions. First steps in this direction
are taken by Huang and Guibas [HG13], who formulate a convex
relaxation to the joint matching problem using the language of semi-

definite programming. The authors derive theoretical guarantees on
the recovery of the correct joint correspondence from noisy input
maps [KLF11]. Very recent works in the field of information theory
explore this direction more abstractly [CG14], giving conditions for
perfect recovery under large outlier ratios. Chen et al. [CGH14]
and Kezurer et al.[KKBL15] recently applied this analysis to con-
sistently match partially similar objects from a small fraction of
densely corrupted pairwise maps. To our knowledge, their algo-
rithms currently represent the state of the art within this family of
approaches.

1.2. Contribution

In this paper, we introduce a novel technique to construct accurate,
consistent correspondences within shape collections. Our formula-
tion has the following key properties:

� The method operates by optimizing directly over the space
of cycle-consistent correspondences, without requiring pairwise
maps to be given as input. As a result, cycle-consistency is satis-
fied exactly by construction.

� We employ sparsity techniques in order to cope with partially
similar as well as outlier shapes in the collection—an aspect that
has received limited interest so far, but that can frequently occur
in practical scenarios.

� Our proposed method is easy to implement. Further, it compares
favourably with the state of the art on challenging datasets while
being orders of magnitude faster.

2. Preliminaries

We model shapes as compact two-dimensional Riemannian mani-
folds Si (possibly with boundary) embedded in R

3, equipped with
the intrinsic distance function di .

Let us be given a collection C = {S1, S2, . . . , Sn} of n shapes. The
product space S1 × · · · × Sn consists of all possible n-way (i.e. joint)
matches between the shapes in C. However, in practical settings it
is often the case that outliers (e.g. shapes belonging to different
classes) as well as partially similar shapes (e.g. man and centaur)
are present in the collection (see Figure 2). In order to deal with
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Figure 2: A collection of shapes may carry partiality at different
levels. Our method allows to extract consistent correspondences
reliably under partial similarity (e.g. S1/S2/S3) and at the same
time detect and avoid outlier shapes (S5).

such cases, we extend the set of possible joint matches as follows.
Formally, we consider the set constructed as the union

�̆ =
⋃
k∈I

∏
j∈k

Sj , (1)

where I is a collection of index sets k defined by the power set
(denoted by P) relation

I = {k : k ∈ P({1, 2, . . . , n}) ∧ |k| > 1} . (2)

In other words, �̆ is the set of all possible m-fold Cartesian products
between the shapes in C, with 1 < m ≤ n. Clearly, this set also
includes S1 × · · · × Sn and in particular |�̆| grows exponentially
with the number of shapes.

Each element γ ∈ �̆ with |γ | = d ≤ n now represents a joint
match between a subset of d shapes from the collection.

Definition 1. We define a multi-way match among d ≤ n shapes
to be any element γ ∈ �̆. A multi-way match is represented as the
ordered d-tuple

γ = (pi)i∈k with k ∈ I and pi ∈ Si ,

where k is a sequence of shape indices, denoting the shapes matched
by γ . We will write pi ∈ γ to say that the vertex pi is matched via
γ .

Note that two multi-way matches γ, γ ′ ∈ �̆ may in general have
different lengths |γ | and |γ ′|. In particular, they may or may not have
shapes in common. We will therefore define the overlap γ ∩ γ ′ as the
longest common subsequence of their shape indices. For example,
in Figure 2 we show the multi-way matches A,B, C ∈ �̆. For A

and B we have the overlap A ∩ B = (1, 2), whereas A ∩ C = (3)
and B ∩ C = ∅.

For our purposes, we are interested in subsets of �̆ that satisfy
certain properties, as described in the following:

Definition 2. A multi-way correspondence between the n shapes
in C is a subset � ⊂ �̆ satisfying: for every Si ∈ C and for every
pi ∈ Si , there exists at least one γ ∈ � such that pi ∈ γ .

Figure 3: Left: The red matches violate cycle-consistency, since
p1 
= q1. Right: Example of two incompatible multi-way matches
(red and green): the hand in the middle shape is assigned to multiple
distinct points on the other shapes.

The above definition ensures that in a multi-way correspondence
each vertex of each shape is matched to corresponding vertices on
(a subset of) the other shapes. We now define what is the meaning
of cycle-consistency in our setting.

Definition 3. We say that a multi-way correspondence � between
shapes in the collection C = {Si}n

i=1 is cycle-consistent if, for any
j, k, � ∈ {1, . . . , n}, whenever � matches pj ∈ Sj to pk ∈ Sk and
matches pk to p� ∈ S�, then � also matches pj to p�.

Remark 1. A multi-way match is always cycle-consistent by con-
struction, since it is an element of a product set. This applies to any
cycle, with length possibly longer than 3.

Note that while individual multi-way matches are always cycle-
consistent, a fixed point pi ∈ Si might be mapped to multiple points
on the other shapes by a multi-way correspondence. We therefore
introduce the following notion:

Definition 4. Two distinct multi-way matches γ, γ ′ ∈ � are said to
be incompatible whenever pi ∈ γ and pi ∈ γ ′ for some pi ∈ Si and
i ∈ {1, . . . , n}.

An illustration of incompatible matches is given in Figure 3.

3. Problem Statement

The goal of joint object matching is to determine a (possibly dense)
correspondence among multiple shapes in a collection, with the
requirement that the correspondence be consistent along cycles of
any length. In this section, we formulate the joint matching problem
as one of minimum-distortion correspondence [Mém11]. Differ-
ently from most other approaches [STCB07, ZKP10, NBCW*11,
HZG*12, PKS13, SY14, YLL*14] our formulation comes with the
theoretical guarantee of cycle-consistency, and additionally deals
with partially similar as well as outlier shapes in a natural way.

Metric distortion

Suppose we are given two multi-way matches γ, γ ′ ∈ �, respec-
tively, putting |γ | and |γ ′| points into correspondence, where
in general |γ | 
= |γ ′|. Then, we can quantify the quality of the
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correspondence by the cost function ε : � × � → R+ ∪ {∞} de-
fined as:

ε(γ, γ ′) = max
pk ,p�∈γ

p′
k
,p′

�
∈γ ′

|dk(pk, p
′
k) − d�(p�, p

′
�)| . (3)

Here, we tacitly assume that the multi-way matches are compared
only on their overlap, that is, over the shapes in common. In (3) we
put ε(γ, γ ′) = ∞ whenever γ and γ ′ are incompatible (see Figure 3)
or non-overlapping. This definition of cost encodes the maximum
metric distortion attained by the two multi-way matches across the
shape collection.

Multi-way L p distortion

A multi-way correspondence � ⊂ �̆ can be alternatively modelled
as a binary function g : �̆ → {0, 1} such that for every Si ∈ C and
for every q ∈ Si ,

∑
γ∈�̆

s.t. q∈γ

g(γ ) ≥ 1 . (4)

Function g can be seen as an indicator function over the space of all
possible multi-way matches. Then, the condition above simply asks
that each point in each shape is contained in at least one γ ∈ �̆ for
which g(γ ) = 1, thus being a strict requirement to match all points
in all shapes.

The overall metric distortion caused by a correspondence � can
be measured by the Lp distortion:

‖ε‖p

Lp (g×g) =
∑

γ,γ ′∈�̆

εp(γ, γ ′)g(γ )g(γ ′) , (5)

with p ≥ 1. Now, determining a correspondence of minimum dis-
tortion amounts to seeking a minimizer (not unique in general) to:

min
g:�̆→{0,1}

‖ε‖p

Lp (g×g), (6)

where g ranges over all correspondences � ⊂ �̆.

Example

In the specific case where n = 2, a multi-way match γ = (p1, p2)
reduces to a pair of points and the error criterion of Equation (3)
simplifies to the absolute metric distortion ε((p1, p2), (q1, q2)) =
|d1(p1, q1) − d2(p2, q2)|. Then, by taking the limit for p → ∞ the
expression (6) yields the classical Gromov-Hausdorff distance be-
tween metric spaces (S1, d1) and (S2, d2) [Mém11].

Dealing with partiality

The combinatorial complexity of optimizing over all possible multi-
way correspondences � ⊂ �̆ makes the problem intractable even for
small collections. Partial remedy to this issue is provided by relaxing
the binary map to take continuous values, that is, g : �̆ → [0, 1].

We further note that, although Equation (1) enables us to better
deal with partially similar shapes, the constraint defined in Equa-
tion (4) requires us to match all points in all shapes. However,
we would like outlier shapes to not partake to the final correspon-
dence. Furthermore, we want to allow individual shape points to be
left unmatched if they do not find suitable matches throughout the
collection.

We model this requirement by introducing a sparse model for the
correspondence. To this end, we relax condition (4) by demanding∑

γ g(γ ) = 1 over �̆. This requirement gives us an interpretation of
g as a discrete probability distribution over the space of all multi-
way matches. Importantly, the L1-like constraint on g has a sparsity-
promoting effect on the solution, hence modelling partiality.

Unfortunately, directly minimizing a prob-
lem of the form given in Equation (6) sub-
ject to

∑
γ g(γ ) = 1 would yield trivial so-

lutions. Specifically, we can characterize the
global minimizers by: g(γ ) = 1 for γ = γ �

and g(γ ) = 0 otherwise, where γ � is taken to
be any γ ∈ �̆. This amounts to concentrating the whole mass of g

into one single multi-way match, as illustrated in the inset figure.

We sidestep this issue by passing to a maximization problem.
Suppose we are given, as opposed to the cost ε, a similarity function
s : �̆ × �̆ → R+ measuring the extent to which two given multi-
way matches preserve pairwise distances. A possible choice is given
by the Gaussian score:

s(γ, γ ′) = e
− 1

μ2 ε2(γ,γ ′)
, (7)

where μ2 ∈ R+ is the variance of s. Note that s(γ, γ ′) = 0 when-
ever ε(γ, γ ′) = ∞; that is, incompatible matches are assigned zero
similarity. We get to the following optimization problem, which we
consider throughout this paper:

Problem 1. (Partial multi-way correspondence). Given a collection
of shapes C, we seek a partial multi-way correspondence among
them as a maximizer to:

max
g:�̆→[0,1]

∑
γ,γ ′∈�̆

s(γ, γ ′)g(γ )g(γ ′) (8)

s.t.
∑
γ∈�̆

g(γ ) = 1 (9)

c̄(γ, γ ′)g(γ )g(γ ′) = 0 ∀ γ, γ ′ ∈ �̆, (10)

where we set c̄(γ, γ ′) = 1 if the two matches are incompatible, and
c̄(γ, γ ′) = 0 otherwise. Equation (10) ensures that incompatible
matches will not appear in any local optimum.

The transition to a maximization problem has a regularizing ef-
fect on its optima, as there are no trivial maximizers meeting the
constraints in this case.

Remark 2. Any local solution to Problem 1 satisfies the key re-
quirements of a multi-way correspondence: (1) it is always cycle-
consistent (by construction of �̆); (2) shape points are activated at

c© 2016 The Authors
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Figure 4: (a) Incorrect correspondence due to inconsistent han-
dling of the symmetry. (b) Even if the solution is not orientation-
preserving, symmetries are treated consistently.

most once by the correspondence (by Equation (10)); and (3) partial
matches are allowed (by �̆ and Equation (9)).

A note on symmetries

In case the shapes in the collection carry bilateral symmetries, map-
ping either side would in principle yield the same optimum for
Problem 1. In this paper, we deem correct such symmetric solutions
as long as they remain consistent across all pairs of shapes (see
Figure 4).

4. Optimization

Problem 1 is a non-convex quadratic program with O(|�̆|) variables;
as such, it is in general very difficult to solve and to give guarantees
on the optimality of the solution. In this section, we develop an
efficient strategy to get good local solutions to this problem. The
general strategy is to decompose it into two sub-problems: a robust
process to get good match candidates (Section 4.1), and a restriction
of the original problem to the reduced feasible set (Section 4.2).

4.1. First sub-problem (reducing the feasible set)

The first sub-problem is aimed at reducing the size of the feasible
set �̆ to a smaller subset of ‘stable’ candidates � ⊂ �̆. Then, we
will directly optimize Problem 1 over the reduced feasible set �.

4.1.1. Outline

The general insight behind our formulation is that, given a collection
of shapes, it is relatively easy and inexpensive to solve for one single
multi-way match between them. Specifically, the idea is to seek
for a multi-way match γ ∈ �̆ that maximizes a measure of point-
wise similarity across several shapes, hence taking advantage of the
stability induced by the whole shape collection. The final goal is
to keep in the feasible set only multi-way matches maximizing this
measure of similarity, since they are expected to be accurate and
stable against outliers, as shown in Figure 5.

This problem can be formulated as a series of quadratic programs
with sparsity constraints (Equation (11)), each yielding a multi-way
match γ ∈ �. Note that mapping constraints are imposed such that
only cycle-consistent matches are allowed to be local optima.

Figure 5: Outlier shapes are automatically excluded by our ap-
proach, as they do not find support from the other shapes in the
collection. Note that the human shapes appearing in this exam-
ple come from different datasets (TOSCA, SCAPE, SHREC’14). A
subset of all matches is shown.

4.1.2. Solving for a single multi-way match

Assume for simplicity that |Si | = N for all i = 1, . . . , n. Further,
let us be given a point-wise similarity function τ : Sk × S� → R+,
measuring the similarity of some descriptor defined at shape points
(an example is given in Section 5.1). Note that this function is not
the same as the one defined in Equation (7), which instead measures
the similarity between multi-way matches.

We introduce the vector x ∈ [0, 1]nN , representing a probabil-
ity distribution over all points in

⋃
i Si . Then, consider the L1-

regularized non-convex quadratic program:

max
x≥0

x�Ax s.t. x�1 = 1 . (11)

Here, matrix A is a symmetric similarity matrix:

A =

⎛
⎜⎜⎜⎜⎝

0 S1,2 · · · S1,n

S1,2 0 · · · · · ·
...

... 0 Sn−1,n

S1,n
... Sn−1,n 0

⎞
⎟⎟⎟⎟⎠ , (12)

where each symmetric block Sk,� ∈ R
N×N contains the similarity

values between the points in Sk and S�, according to function τ . The
reason for the zero blocks along the diagonal will become clear with
Theorem 1. Note that the matrix above is not related to the block
matrix appearing in [HG13, CGH14], which instead represents a
collection of pairwise maps (ideally permutations).

The key result of this section is that the support of any local
maximizer to the problem above (i.e. the set of points for which
xi 
= 0) is guaranteed to be a single partial multi-way match γ ∈ �̆

between the shapes in the collection, as we state in the following
theorem.

c© 2016 The Authors
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Figure 6: Our matching pipeline. First sub-problem (from left): Given a collection of shapes as input, a set Q of queries are generated (e.g.
by farthest point sampling in the joint WKS space); we then compute distance maps (shown here as heat maps over the shapes) in descriptor
space from each shape point to each query qk ∈ Q, and keep the vertices having distance smaller than a threshold; finally, a single multi-way
match is extracted by solving problem (11). Second sub-problem: The multi-way matches extracted by iterating the previous step are compared
using a measure of metric distortion; the final solution (in orange) is obtained by solving problem (13) over the reduced feasible set.

Theorem 1. Let x be a strict local maximizer of problem (11),
where A = A� and Aii = 0 for all i = 1, . . . , nN . Then, Aij > 0
for all i, j such that xi 
= 0 , xj 
= 0.

Proof. See the Appendix. �

According to Theorem 1 local solutions to (11) cannot simultane-
ously activate points with zero similarity. This gives us a powerful
means to restrict feasibility to solutions that activate at most one
point per shape: It is sufficient to set Aij = 0 whenever indices i

and j correspond to points on the same shape, that is, matrix A must
have zero blocks on the diagonal.

Remark 3. Since local solutions to problem (11) are guaranteed to
be multi-way matches, they are always cycle-consistent by definition.

4.1.3. A series of quadratic problems

Clearly, in order to construct the reduced set � ⊂ �̆ we need a way
to enumerate the local optima of problem (11). We do so by solving
a sequence of problems of this form, each with a different data
matrix (12). Specifically, in each problem we compute similarities
from a reference descriptor (or ‘query’) to all shape points, and we
discard all dissimilar points.

Suppose we are given a collection Q of queries to compare
against. A family of problems of the form (11) can then be gen-
erated as follows. Given a query qk ∈ Q, for each shape Si ∈ C we
only consider the vertices p ∈ Si such that τ (p, qk) > ξ for some
threshold ξ > 0. In other words, each query selects a different sub-
set of vertices from each shape; since we can generate and solve as
many problems (11) as there are queries qk , we can proceed con-
structively and store each solution in our reduced feasible set �,
which will have size |�| = |Q|.

Note that each of these problems will be quite small, since the
number N ′ of shape points that are similar to each query is sig-
nificantly smaller than the total number of points N . We refer to
Section 5.5 for an empirical evaluation. We also note that this ap-
proach is different from previous approaches which require pairwise
maps as input or which require geometrically consistent samples to

be pre-selected across the shapes [NBCW*11, HZG*12, HG13,
SY14, CGH14].

4.1.4. Example

Suppose we are given a point descriptor function f :
⋃

i Si → R
m,

providing an embedding of all shapes in R
m. The query set Q can

be defined implicitly by a k-means clustering or by farthest point
sampling directly in Imf .

4.1.5. Numerical solution

It is worthwhile to note that problems of this form have a natu-
ral interpretation from the point of view of evolutionary game the-
ory [ARBTP09, RBA*12]. We leverage this connection by adopting
the infection-immunization dynamics algorithm [RBB11], an effi-
cient local optimizer with convergence guarantees that exploits the
specific structure of problem (11).

4.1.6. Symmetries

In order to favour symmetry-consistent so-
lutions (Figure 4), we assume to be given
left-right maps for the shapes in the collec-
tion, that is, labellings f : S → {L,R} asso-
ciating each shape point to either side. The
maps are then used to augment the shape de-
scriptors. While there are robust approaches

to perform this task [LKF12], for our purposes it is enough to have
a rough estimate so as to avoid obviously inconsistent solutions. We
do so by looking for approximate rigid symmetries [PSG*06] on a
multi-dimensional scaling in R

3 of a few farthest samples per shape.
An example of such procedure is shown in the inset figure. Note
that, compared to existing methods, this is a simpler requirement
than having input pairwise maps.

4.2. Second sub-problem (correspondence)

We are now ready to solve a smaller version of Problem 1 by
replacing �̆ with the reduced set �. We proceed by directly rewriting
the problem in matrix notation.

c© 2016 The Authors
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Data: Shape collection C of n shapes
Result: Partial multi-way correspondence Γ among the

shapes in C
pre-processing (Sec. 5);
Q← generated as in the Example of Sec. 4.1;
Λ←∅;
forall the q ∈ Q do

find points p ∈ Si s.t. τ(p,q) > ξ for i= 1, . . . ,n;
construct similarity matrix A as in Eq. (12);
x← solve problem (11) using [RBB11];
γ← support of x;
update Λ← Λ∪{γ};

end
construct similarity matrix B as in Sec. 4.2;
g← solve problem (13) “grouped” as in Sec. 4.2;
Γ← support of g;

Algorithm 1: Full pipeline of our method for consistent
partial matching of shape collections. Detailed parameter
values are given in Section 5.

Suppose we solved |�| = M instances (one per query) of
Problem (11), hence we have partial multi-way matches γi for
i = 1, . . . , M at our disposal. We can now compose the similar-
ity terms s(γi, γj ) into a similarity matrix B ∈ R

M×M
+ such that

Bij = Bji = s(γi, γj ), and we set Bii = 0 for all i = 1, . . . , M by
Theorem 1. The correspondence function g can simply be repre-
sented by a vector g ∈ [0, 1]M . Similarly to the previous case, we
arrive at the quadratic program:

max
g≥0

g�Bg s.t. g�1 = 1. (13)

Note that the mapping constraints (10), which impose that incom-
patible matches cannot be part of the final solution, are already
incorporated in the data matrix B. This is because we set Bij = 0
whenever γi and γj are incompatible (by Equation (7)).

A problem of this form for the simple case of two shapes was pre-
viously considered in [RBA*12]. Local solutions to (13) (obtained
again with [RBB11]) will be accurate, although sparse. However,
since the candidate set � is likely to contain good match hypothe-
ses due to the previous optimization, there is hope to elicit a larger
correspondence from it. To this end, we consider three simple ap-
proaches:

4.2.1. Grouped sparse

Following [RBTP09, ART12], we proceed by iteratively solving
updated versions of problem (13). Whenever a local optimum is
reached, the matches resulting from the optimizer g are stored, and
the data matrix is modified by setting Bi� = B�i = 0 for all i such
that gi 
= 0. By Theorem 1, this amounts to reducing the feasible
set to the remaining candidates in �. The iterations stop when the
objective g�Bg falls below a certain threshold.

4.2.2. Spectral relaxation

A different way to approach the problem consists in replacing the
L1 constraint g�1 = 1 by a L2 counterpart g�g = 1. This type of

Figure 7: Comparison between different numerical approaches to
solve problem (13). Left: Matches visualized on two scanned shapes
from the SHREC’14 dataset, extracted from a multi-way correspon-
dence of length 7; the spectral relaxation yields 43 matches (in
green), while the elastic net with α = 0.7 only 11 matches (in red),
although less noisy. Right: Quantitative comparison on the entire
TOSCA dataset; the iterated L1 approach provides the best combi-
nation of size and accuracy.

constraint acts as a Tikhonov regularizer, which tends to yield denser
solutions for this kind of problems. A global optimum can then be
computed by Rayleigh’s ratio as the principal eigenvector of B. This
comes at the price of sacrificing the mapping constraints guaranteed
by Theorem 1, which must be imposed by a post-processing of the
obtained solution [LH05].

4.2.3. Elastic net

Finally, one may introduce a form of controllable sparsity into the
problem by elastic net regularization [RTH*13]. In this case, the
L1 constraint is replaced by the convex combination (1 − α)g�1 +
αg�g = 1, where parameter α ∈ [0, 1] allows to transition smoothly
from a formulation equivalent to (13) (hence sparse) to a purely
spectral solution (denser).

In Figure 7 we show a full comparison of the three alternatives on
the TOSCA dataset, using the cumulative error measure defined in
Section 5. Finally, the main steps describing our matching pipeline
are given in Algorithm 1 and Figure 6.

4.3. Complexity and scalability

We conclude the theoretical part with a complexity analysis of our
method. Suppose our collection C is made of n shapes, each shape
has N points, and M is the number of queries.

For a single query, computing the similarity matrix A takes
O((nN )2) operations. In practice, since for each query we have
N ′ � N , this is a fast operation of the order O((nN ′)2). Optimiza-
tion of problem (11) using evolutionary dynamics [RBB11] is a
O(nN ′) step. The complexity of the first sub-problem (generation
of �) is thus O(M · (nN ′)2).

Next, constructing matrix B is a O(M2) operation; this also in-
volves computing geodesic distances among all points in �, which
can be done efficiently via fast marching [WDB*08]. Since opti-
mizing problem (13) is a O(M) process, the overall complexity

c© 2016 The Authors
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8 L. Cosmo et al. / Consistent Partial Matching of Shape Collections

of the second sub-problem is O(M2). Note that in all our experi-
ments we have once again M � nN , hence this step of the pipeline
is typically very fast. We refer to Section 5.5 for an experimental
evaluation.

5. Experimental Results and Applications

We performed a wide range of experiments on several benchmarks,
namely TOSCA [BBK08], SCAPE [ASK*05], KIDS [RRBW*14]
and SHREC’14 [PSR*14]. These datasets consist of multiple classes
of nearly isometric shapes, with some intra-class variation in the
case of KIDS and SHREC’14. All datasets with the exception
of SHREC’14 come with ground-truth correspondences within
each category. In all the experiments, we ran our matching algo-
rithm using M = 500 queries in descriptor space. Parameter ξ was
chosen as the 10th percentile of the descriptor distances to each
query; the iterative process for solving problem (13) was stopped
when the energy fell below 0.5 (Code will be made available at:
http://vision.in.tum.de/members/rodola/code).

Pre-processing

WKS descriptors [ASC11] are pre-computed for all the meshes. We
rescale each shape by the square root of the k-th Laplacian eigen-
value, with k = 100 for all shapes; this has the effect of normalizing
the meshes to have similar surface area (by Weyl’s law), and at the
same time to yield comparable WKS. Where not specified other-
wise, in our experiments we run the matching pipeline on N = 300
farthest samples per shape (using the Euclidean metric). This is done
in order to avoid solutions that unduly aggregate in small regions.
Note that we do not assume samples to be compatible across shapes
as in [HG13], hence some local error in the computed matches is to
be expected.

Error measure

We quantify the quality of the correspondence by using the same
measure of error defined in [HG13]. Specifically, in our plots we
show the percent of matches pe which have geodesic error (i.e.
distance from the ground-truth) smaller than a threshold e. This
cumulative distribution is computed and aggregated over all the
pairwise matches induced by the obtained multi-way correspon-
dences. The geodesic error is normalized by the square root of the
area of each shape. As in [HG13], we also report values for p0.16

and p0.02, which, respectively, capture the global and local accuracy
of the matching method.

5.1. Sensitivity analysis

The first set of experiments is aimed at analysing the sensitivity
of our method to different parametrizations. In order to reduce
over-fitting, these experiments are performed on a representative
subset of the TOSCA dataset, consisting of the victoria (12 shapes)
and cat (11 shapes) classes.

Point-wise similarity

We measure the similarity between points on different shapes by the
similarity between their associated WKS descriptors. Each signature
is computed on the shape samples using 100 eigenpairs, 100 energy
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Figure 8: Sensitivity experiments on a subset of TOSCA. Here, we
plot the error curves under different choices of point-wise similarity
parameter σ (left), and metric distortion parameter μ (right). In
both graphs, the resulting number of multi-way matches is reported
in parentheses.

levels and variance equal to 6.0 (default parameters as provided by
the authors). Given two points p ∈ Sk and q ∈ S�, we define their
similarity by the Gaussian weight

τ (p, q) = e
− 1

σ2 ‖WKS(p)−WKS(q)‖2
2 . (14)

In Figure 8 (left) we plot the error curves under different choices of
σ ∈ R. Note that smaller values of σ tend to yield more accurate
solutions. The choice of σ also has an effect, although not very
pronounced, on the final number of multi-way matches (reported in
parentheses).

Metric distortion

As described in Equation (7), penalizing the metric distortion of
a pair of multi-way matches is done by means of a control pa-
rameter μ. As shown in Figure 8 (right), changing the value
of μ allows to control the size/accuracy trade-off of the final
correspondence: as μ is increased, distorted matches are tolerated
and included in the solution. Further illustration of this behavior is
given in Figure 9, where we show how the worst-case metric dis-
tortion over the shape collection can be bounded by an appropriate
choice of μ. The choice of this upper bound is ultimately driven by
the application; for example, it makes sense in shape exploration ap-
plications (see Sec. 5.4) to require more accurate, although sparser
matches in order to obtain a better clustering.

In a separate set of experiments, we investigate the effect of dif-
ferent similarity functions s. Namely, we consider both the Gaussian
function of Equation (7) as well as a modified version of it, given
by replacing the worst-case cost of Equation (3) by:

ε2(γ, γ ′) =
∑

pk ,p�∈γ

p′
k
,p′

�
∈γ ′

|dk(pk, p
′
k) − d�(p�, p

′
�)|2 . (15)

Following [RBA*12], we also include a relative (Lipschitz) notion
of similarity in the comparison, defined as:

s(γ, γ ′) = mink dk(pk, p
′
k)μ

maxk dk(pk, p
′
k)μ

. (16)
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Figure 9: Effect of parameter μ on the metric distortion term of
Equation (7). Increasing the value of μ makes geometric valida-
tion more tolerant to distorted matches. In this real example on
the SCAPE dataset, the coloured regions show the admitted met-
ric distortion for a pair of multi-way matches at different values of
μ. An optimal value for this parameter can be chosen such that a
prescribed metric distortion is not exceeded (e.g. constrained to the
orange area).

Table 1: Comparison between different metric distortion measures on a
subset of TOSCA. The best results (in bold) are obtained when we penalize the
worst-case absolute metric error. Interestingly, there is no clear advantage
in using a relative error as opposed to its absolute counterpart.

L∞ L2 Lipschitz

Local (p0.02) 26.81 16.01 20.04
Global (p0.16) 96.21 95.49 91.05

Since a fixed value of μ will in general scale differently in the
three cases, each variant is parametrized so as to yield 30 multi-way
matches on average. The results of this experiment are summarized
in Table 1.

5.2. Comparisons

We compare our method with MatchLift, the convex relaxation
approach of Chen et al. [CGH14]. This method represents, to the
best of our knowledge, the state of the art for this class of problems.
In Figure 10 we report the results on the TOSCA and KIDS datasets.
Note that MatchLift did not previously appear in these benchmarks.
For a fair comparison, the input pairwise maps were computed
using the method described in [CGH14] with WKS as a descriptor.
In the same figure, we also report a runtime comparison of the
two methods on collections of increasing size. In Table 2 we show
additional comparisons with [HG13] and [HZG*12] on the TOSCA
and SCAPE datasets. As a baseline for standard pairwise matching,
we also include the method of [RBA*12] in the comparison. The
results show that our method performs in line with the state of

Figure 10: Left: Comparison between our method and the state-
of-the-art method of [CGH14] on the TOSCA and KIDS datasets;
the quality of the input maps of MatchLift is also reported. Right:
Comparison of execution times. In all the comparisons, the two
methods generated a comparable amount of matches.

Figure 11: Joint region matching on SCAPE (only a subset shown).
The optimization process automatically excluded shape regions hav-
ing incompatible segmentations with respect to the rest of the col-
lection (e.g. two segments per arm). Our pipeline took 2 s to produce
these results.

the art in most cases, with the additional theoretical guarantee of
cycle-consistency and at a fraction of the computational time.

We remind the reader that all methods included in the compar-
isons, except for ours, require pairwise maps to be given as input
(also evaluated in the comparisons), hence acting more like global
regularizers rather than ‘pure’ multiple shape matching methods.
Also note that our method was not tuned to perform well in the
comparisons, as our sensitivity analysis was only executed on a
small subset of TOSCA.

Table 2: Comparisons with other recent methods in terms of global (p0.16)
and local (p0.02) accuracy. The in column reports the quality of the input
maps [KLF11].

Ours [HG13] [HG13]in [HZG*12] [RBA*12]

TOSCA (p0.16) 97.7 100 84.1 97.2 94.81
SCAPE (p0.16) 95.9 99.1 83.2 99.3 91.10
TOSCA (p0.02) 21.9 35.7 – 38.4 14.87
SCAPE (p0.02) 50.6 42.1 – 44.4 10.29

c© 2016 The Authors
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Figure 12: An example of shape retrieval. The query shape is
matched jointly to the shapes in the database, forming a cluster
with the shapes from the same class.

5.3. Region matching

Our method can be trivially modified to work with region-wise
rather than point-wise correspondences, assuming a (possibly noisy)
segmentation is provided for the input shapes. The modification
boils down to define a proper similarity measure among regions.
To this end, we use the simple Gaussian score of Equation (14),
where the cost term is replaced by the L2 distance between the area-
weighted average WKS of each region. Regions are computed by
consensus segmentation [RRBC14], using the code provided by the
authors.

Note that since most shapes typically contain only 5 to 15 regions,
a full similarity matrix A can be constructed which encodes the
pairwise similarities among all regions in the collection (i.e. we
do not need to define queries). We can then solve the resulting
problem (11) iteratively, each time reducing the feasible set by
removing solutions from the past iterates (this is done by putting

Figure 13: Breakdown of our computational times over the SCAPE
dataset. Left: Runtime as a function of a subset of shapes in the
collection, with 300 samples per shape. The first and second opti-
mizations refer to solving problems (11) and (13), respectively. The
runtime for the first problem is accumulated over M = 500 queries.
Right: Runtime as a function of farthest samples per shape, over the
entire collection (71 shapes). Note the different scales among the
two graphs.

Figure 14: An example of shape clustering of the TOSCA dataset,
obtained by running the matching algorithm followed by extrac-
tion of connected components. Classes are encoded by colour; note
how all humans except for one victoria pose (in black) have been
clustered together. Total running time is around 1 min 30 s.

rows and columns of A to zero, as per Theorem 1). In Figure 11 we
show some qualitative results produced by this simple procedure
when applied to a noisy version of SCAPE, in which 10 random
outlier shapes from TOSCA were introduced.

5.4. Other applications

Our approach is robust to the presence of outliers by design, and we
can always extract an accurate solution as long as the outliers do not
have a structure.

Consider the example in Figure 1. As problem (11) is iteratively
solved, the candidate set � is updated with matches that put the
horse parts into correspondence, in addition to matches that only
relate the human bodies. The subsequent optimization of (13) then
extracts two intra-similar clusters of matches, one for each semantic
group. In this case, it is clear that there is technically no reason to
treat either of the two solutions as noise. Consider now a collection
of shapes of a given class, which has been corrupted by introducing
other shapes (Figure 5). Since the extra-class objects fail to form
stable matches with any other object in the collection, they will
not appear in the final solution. This key feature of our framework
suggests, among others, two applications:

Shape exploration and clustering

Consider once again the example in Figure 5, and suppose both
outlier shapes actually belong to the same class. This scenario can
be seen as an instance of structured noise—in fact, we now have
two semantic classes forming intra-similar groups, and it would be
desirable to separate them into disjoint clusters [KLM*12]. We do
so by a simple iterative procedure: (1) run Algorithm 1 on the whole
collection; (2) relabel the resulting multi-way correspondence into
clusters, based solely on the shape indices; (3) remove the matched
shapes from the collection and repeat. Note that the clustering step
is especially efficient, as it boils down to detecting connected com-
ponents in a graph where each node represents a shape, and an edge
exists between two nodes whenever there exist (at least 3) matches

c© 2016 The Authors
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connecting the respective shapes. Running this procedure on the
TOSCA dataset gives the results reported in Figure 14.

Shape retrieval

The approach described above can be directly applied to shape
retrieval applications. Given a query shape Sq /∈ C, the task is to
detect the subset Cq ⊆ C containing shapes that belong to the same
class as Sq . This can be done by seeking a multi-way correspondence
on the augmented set C ∪ {Sq}, and by retaining the cluster of shapes
that match to Sq in the final solution (see Figure 12).

5.5. Runtime

One of the key advantages of our matching method lies in its com-
putational efficiency. In Figure 13 we show a breakdown of the
runtimes across the whole pipeline. Observe that the first optimiza-
tion can be easily parallelized (we used 7 cores in our tests), as
it amounts to solving independent instances of problem (11), one
problem per query.

Our method takes around 1 min 30 s to match the entire SCAPE
collection (71 shapes) when we use 300 samples per shape. We note
that, while from the point of view of shape retrieval our method
cannot compete with specialized approaches, the increased running
time accounts for the correspondences we obtain across all the
shapes in the collection. In this regard, shape retrieval can be seen
more as a byproduct of our method than an application per se.

Further runtime comparisons with the method of [CGH14] are
given in Figure 10. All experiments were coded in Matlab/C++ and
run on an Intel Core i7 4900MQ with 32GB memory, using publicly
available code for [CGH14] and for the optimization step [RBB11].

6. Discussion and Conclusions

In this paper, we tackled the problem of consistent joint matching
of shape collections. Differently from the dominant approaches, we
considered a situation in which the collection is not equipped with
input maps between the shape pairs. To deal with this challenging
scenario, we modelled the problem as one of minimum distortion
correspondence across the whole shape collection, while at the same
time allowing outlier or partially similar shapes. We showed how to
retrieve good local solutions to the resulting optimization problem
by solving a sequence of quadratic programs in an efficient way—
which in turn enabled favourable results in region matching and
shape exploration applications.

Our approach does have a few shortcomings. First, since our
method relies on the computation of geodesics, we require the shapes
to have no significant missing parts, that is, shapes with large holes
are not allowed. Second, while the sparse model allows to success-
fully deal with partial similarity at different levels, this partiality is
not easily controllable and it might well be that incomplete matches
are extracted even within outlier-free collections. An example of
this is shown in Figure 14, where one human shape (in black) was
left unmatched by our method. This is related to our necessity to
establish a similarity criterion that acts globally on the whole collec-
tion, hence driving longer, but less globally-similar matches to be
cut out from the solution even if correct. Enforcing specific shapes

to partake in the final solution is a possible direction of future
work.

Acknowledgements

The authors wish to thank Mohamed Souiai, Zorah Lähner, Samuel
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Appendix

The appendix contains a proof to Theorem 1. The proof follows
along the lines of, for example, [ARBTP09, RBB11], although
by taking a pure optimization perspective as opposed to a game-
theoretical one.

Problem

We consider the constrained quadratic problem:

max
x≥0

x�Ax s.t. x�1 = 1 , (A.1)

where x ∈ [0, 1]n, A = A� and Aii = 0 for all i = 1, . . . , n.

First-order optimality conditions

A point x satisfies the Karush-Kuhn-Tucker (KKT) conditions for
problem (A.1) if there exist real constants λ and μ1, . . . , μn with
μi ≥ 0 for all i = 1, . . . , n such that:

(Ax)i − λ + μi = 0 , (A.2)

and
∑

i xiμi = 0. This latter condition further implies that μi = 0
whenever xi 
= 0, since both quantities are nonnegative for all i =
1, . . . , n. Thus, we can rewrite the KKT conditions (A.2) as

(Ax)i

{ = λ if xi 
= 0
≤ λ otherwise,

(A.3)

for some λ > 0. We can easily see that

x�Ax =
∑
i,j

xixj Aij =
∑

i : xi 
=0

xi(Ax)i =
∑

i : xi 
=0

xiλ = λ , (A.4)

where the last equality follows from the constraint x�1 = 1. Hence,
a point x satisfies the KKT conditions if

x�Ax ≥ (Ax)i , (A.5)

for all i = 1, . . . , n. This, in turn, implies x�Ax ≥ y�Ax for all y
satisfying y�1 = 1.
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Second-order optimality conditions

A point x satisfies the second-order sufficiency conditions for strict
local optimality if x is a KKT point, and if the Hessian of (A.1)
is negative definite on the subspace M(x), that is z�Az < 0 for all
z ∈ M(x), where

M(x) = {z ∈ R
n : z�1 = 0 and zj = 0 for all j ∈ J } \ {0} , (A.6)

and

J = {j = 1, . . . , n : xj = 0 , μj > 0} . (A.7)

This condition can be more compactly rephrased as follows. Con-
sider the set

U = {y ∈ R
n : y�Ax = x�Ax , y 
= x} , (A.8)

and let z = y − x with y ∈ U . Then (x + z) ∈ U , which means
z�Ax = 0, thus z ∈ M(x); the converse is also true. Now we can
write

(x − y)�Ay = −z�A(x + z) = −z�Az > 0 , (A.9)

by the negative definiteness condition z�Az < 0. Thus, the second-
order optimality condition can be succinctly phrased as:

x�Ay > y�Ay (A.10)

whenever y�Ax = x�Ax and x 
= y. Note that the converse can also
be easily proven, that is, Equation (A.10) holds if and only if x is a
KKT point and z�Az < 0 for all z ∈ M(x).

We are now ready to prove the following theorem.

Theorem A.1. Let x be a strict local maximizer of problem (A.1),
where A = A� and Aii = 0 for all i = 1, . . . , n. Then, Aij > 0 for
all i, j such that xi 
= 0 , xj 
= 0.

Proof. Assume Aij ≤ 0 for i 
= j and xi 
= 0, xj 
= 0. Denote by ei

the i-th column of the identity matrix, and note that ei�Ax = (Ax)i
and ei�Aej = Aij . Now let y = δ(ei − ej ) + x, where 0 < δ ≤ xj .
We have

y�Ax = δ(ei − ej )�Ax + x�Ax = x�Ax , (A.11)

where we used the fact that (ei − ej )�Ax = (Ax)i − (Ax)j = λ −
λ = 0 by Equation (A.3). However,

(x − y)�Ay = −δ(ei − ej )�A[x + δ(ei − ej )] (A.12)

= −δ2(ei − ej )�A(ei − ej ) (A.13)

= −δ2(Aii + Ajj − 2Aij ) (A.14)

= 2δ2Aij ≤ 0 , (A.15)

which implies x�Ay ≤ y�Ay. In other words, we have constructed
a y for which the second-order condition (A.10) does not hold when
y�Ax = x�Ax, contradicting the assumption that x is a strict local
maximizer. �
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